Propagation of light through curved graded index optical waveguides supporting an arbitrary high number of modes is investigated. The discussion is restricted to optical wave fields which are well confined within the core region and losses through radiation are neglected. Using coupled mode theory formalism, two new forms for the propagation kernel for the transverse electric (TE) wave as it travels along a curved two-dimensional waveguide are presented. One form, involving the notion of “bend” modes, is shown to be attractive from a computational point of view as it allows an efficient numerical evaluation of the optical field for sharply bent waveguides.