We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Poor-quality diet, regarded as an important contributor to health inequalities, is linked to adverse health outcomes. We investigated sociodemographic and lifestyle predictors of poor-quality diet in a population sample.
Design
A cross-sectional analysis of the Survey of Lifestyle, Attitudes and Nutrition (SLÁN). Diet was assessed using an FFQ (n 9223, response rate = 89 %), from which a dietary score (the DASH (Dietary Approaches to Stop Hypertension) score) was constructed.
Setting
General population of the Republic of Ireland.
Subjects
The SLÁN survey is a two-stage clustered sample of 10 364 individuals aged 18 years.
Results
Adjusting for age and gender, a number of sociodemographic, lifestyle and health-related variables were associated with poor-quality diet: social class, education, marital status, social support, food poverty (FP), smoking status, alcohol consumption, underweight and self-perceived general health. These associations persisted when adjusted for age, gender and social class. They were not significantly altered in the multivariate analysis, although the association with social support was attenuated and that with FP was borderline significant (OR = 1·2, 95 % CI 1·03, 1·45). A classical U-shaped relationship between alcohol consumption and dietary quality was observed. Dietary quality was associated with social class, educational attainment, FP and related core determinants of health.
Conclusions
The extent to which social inequalities in health can be explained by socially determined differences in dietary intake is probably underestimated. The use of composite dietary quality scores such as the DASH score to address the issue of confounding by diet in the relationship between alcohol consumption and health merits further study.
To estimate the extent of under- and over-reporting, to examine associations with misreporting and sociodemographic and lifestyle characteristics and mental health status and to identify differential reporting in micro- and macronutrient intake and quality of diet.
Design
A health and lifestyle questionnaire and a semi-quantitative FFQ were completed as part of the 2007 Survey of Lifestyle, Attitudes and Nutrition. Energy intake (EI) and intake of micro- and macronutrients were determined by applying locally adapted conversion software. A dietary score was constructed to identify healthier diets. Accuracy of reported EI was estimated using the Goldberg method. ANOVA, χ2 tests and logistic regression were used to examine associations.
Setting
Residential households in Ireland.
Subjects
A nationally representative sample of 7521 adults aged 18 years or older.
Results
Overall, 33·2 % of participants were under-reporters while 11·9 % were over-reporters. After adjustment, there was an increased odds of under-reporting among obese men (OR = 2·01, 95 % CI 1·46, 2·77) and women (OR = 1·68, 95 % CI 1·23, 2·30) compared to participants with a healthy BMI. Older age, low socio-economic status and overweight/obesity reduced the odds of over-reporting. Among under-reporters, the percentage of EI from fat was lower and overall diet was healthier compared to accurate and over-reporters. The reported usage of salt, fried food consumption and snacking varied significantly by levels of misreporting.
Conclusions
Patterns in differential reporting were evident across sociodemographic, lifestyle and mental health factors and diet quality. Consideration should be given to how misreporting affects nutrient analysis to ensure sound nutritional policy.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.