We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Since its emergence, devil facial tumour disease (DFTD) has spread throughout most of the geographic range of the Tasmanian devil, causing >90% local population decline, >80% overall decline and cascading effects on the ecosystem. We developed a decision tree to guide research and management of this cancer. The devil–DFTD system gives an opportunity to study a wildlife disease in all stages of existence across the entire geographic range of a natural host. Despite predictions of extinction, devils persist. State–space models show that individuals with higher fitness (the larger, more dominant individuals responsible for most of the biting) are more likely to become infected themselves. Individual-based models in which demographic parameters depend on the size of the tumours carried by individual hosts show that DFTD epidemics operate on a much slower timescale than those of viral or bacterial diseases. Following an initial epidemic peak, the consequences for a general epidemic may be coexistence, even in the absence of evolutionary changes in either host or pathogen. Multiple lines of evidence show that Tasmanian devils are evolving in response to DFTD. Conservation efforts are now shifting from managing for extinction to managing for persistence.