We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Epidemiologic studies and animal studies increasingly suggest that exposures to environmental chemicals, nutrition, physical factors, and other factors early in development have a role in susceptibility to disease in later life. The mammalian female reproductive system arises from the uniform paramesonephric duct, the müllerian duct. The major subtypes of epithelial ovarian cancer (EOC) show morphologic features that resemble those of the müllerian duct-derived epithelia of the reproductive tract. Exposure of the developing female reproductive tract to diethylstilbestrol (DES), either in vivo or in organ culture, repressed the expression of HOXA10 in the uterus and resulted in uterine metaplasia. Epigenetic change in the molecular program of cell differentiation in the affected tissues may be a common mechanism. Most regions of the mammalian genome exhibit little variability among individuals in tissue-specific DNA methylation levels. Future analyses of epigenetic imprints of genes explain the developmental origins of disease.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.