We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Though cognitive abilities in adulthood are largely influenced by individual genetic background, they have also been shown to be importantly influenced by environmental factors. Some of these influences are mediated by epigenetic mechanisms. Accordingly, polymorphic variants in the epigenetic gene DNMT3B have been linked to neurocognitive performance. Since monozygotic (MZ) twins may show larger or smaller intrapair phenotypic differences depending on whether their genetic background is more or less sensitive to environmental factors, a twin design was implemented to determine if particular polymorphisms in the DNMT3B gene may be linked to a better (worse) response to enriched (deprived) environmental factors.
Methods:
Applying the variability gene methodology in a sample of 54 healthy MZ twin pairs (108 individuals) with no lifetime history of psychopathology, two DNMT3B polymorphisms were analyzed in relation to their intrapair differences for either intellectual quotient (IQ) or working memory performance.
Results:
MZ twin pairs with the CC genotype for rs406193 SNP showed statistically significant larger intrapair differences in IQ than CT pairs.
Conclusions:
Results suggest that DNMT3B polymorphisms may explain variability in the IQ response to either enriched or impoverished environmental conditions. Accordingly, the applied methodology is shown as a potentially valuable tool for determining genetic markers of cognitive plasticity. Further research is needed to confirm this specific result and to expand on other putative genetic markers of environmental sensitivity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.