The gas dynamic laser is numerically studied using quasi-1D and 2D simulations to investigate the effect of diamond pattern of the supersonic flow field (inhomogeneities in density field) on the laser's performance. The system of governing equations is solved with a finite volume approach using a structured grid in which the AUSM+ scheme is used to calculate the convective fluxes. Vibrational temperature of different modes, population inversion and the small signal gain are studied, and the effect of the divergent nozzle's geometry at the maximum gain is analysed.