Repetitive nanosecond-pulse discharge with a highly inhomogeneous electric field was investigated in air at atmospheric pressure. Three repetitive nanosecond generators were used, and the rise times of the voltage pulses were 15, 1, and 0.2 ns, respectively. Under different experimental conditions, X-rays and runaway electron beams were directly measured using various setups. The variables affecting X-rays and runaway electrons, including gap distance, pulse repetition frequency, anode geometry, and material, were investigated. It was shown that it was significantly easier to record the X-rays than the runaway electrons in the repetitive nanosecond-pulse discharge. It was confirmed that a volume diffuse discharge was attributed to the generation of runaway electrons and the corresponding X-rays.