We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this note, by introducing a new variant of the resonator function, we give an explicit version of the lower bound for
$\log |L(\sigma ,\chi )|$
in the strip
$1/2<\sigma <1$
, which improves the result of Aistleitner et al. [‘On large values of
$L(\sigma ,\chi )$
’, Q. J. Math.70 (2019), 831–848].
We prove the reciprocity law for the twisted second moments of Dirichlet $L$-functions over rational function fields, corresponding to
two irreducible polynomials. This formula is the analogue of the formulas
for Dirichlet $L$-functions over $\mathbb{Q}$ obtained by Conrey [‘The mean-square of Dirichlet $L$-functions’, arXiv:0708.2699 [math.NT] (2007)] and Young [‘The reciprocity law
for the twisted second moment of Dirichlet $L$-functions’, Forum Math.
23(6) (2011), 1323–1337].
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.