We consider the Laplacian in a domain squeezedbetween two parallel curves in the plane,subject to Dirichlet boundary conditions on one of the curvesand Neumann boundary conditions on the other.We derive two-term asymptotics for eigenvaluesin the limit when the distance between the curves tends to zero.The asymptotics are uniform and local in the sense thatthe coefficients depend only on the extremal points wherethe ratio of the curvature radii of the Neumann boundaryto the Dirichlet one is the biggest.We also show that the asymptotics can be obtainedfrom a form of norm-resolvent convergencewhich takes into account the width-dependenceof the domain of definition of the operators involved.