We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Negative systems have historically undergone several major changes that were caused by the overall properties of the grammatical system in particular periods. The functions of negatives in any period had to be consonant with the predicate structure, especially the structure of verbal predicates. This chapter addresses the developments of negatives that are most relevant to the establishment of the negative system of Contemporary Chinese rather than exhaustively surveying all negatives in history.
Chapter 5 describes how all verbs are anchored in the system of positive real numbers R+ by focussing on the meaning of a verb without taking into account its arguments. This makes it possible to distinguish stative from non-stative verbs by assigning to each of them a (mathematical) function determining the value of the eventuality argument ?? of the verb. The next step is then to separate non-stative verbs expressing continuity in R+ from verbs expressing discreteness in N by assigning to the latter a discretizing function mapping from R+ to N. A formal account of aspectual composition from the tenseless bottom to the tensed top S’makes it possible to distinguish the (ten) factors that are in play on different levels of phrase structure.
This paper proposes signal detection methods for frequency domain equalization (FDE) based overloaded multiuser multiple input multiple output (MU-MIMO) systems for uplink Internet of things (IoT) environments, where a lot of IoT terminals are served by a base station having less number of antennas than that of IoT terminals. By using the fact that the transmitted signal vector has the discreteness and the group sparsity, we propose a convex discreteness and group sparsity aware (DGS) optimization problem for the signal detection. We provide an optimization algorithm for the DGS optimization on the basis of the alternating direction method of multipliers (ADMM). Moreover, we extend the DGS optimization into weighted DGS (W-DGS) optimization and propose an iterative approach named iterative weighted DGS (IW-DGS), where we iteratively solve the W-DGS optimization problem with the update of the parameters in the objective function. We also discuss the computational complexity of the proposed IW-DGS and show that we can reduce the order of the complexity by using the structure of the channel matrix. Simulation results show that the symbol error rate (SER) performance of the proposed method is close to that of the oracle zero forcing (ZF) method, which perfectly knows the activity of each IoT terminal.
Let $\mathbf{H}_{\mathbb{H}}^{n}$ denote the $n$-dimensional quaternionic hyperbolic space. The linear group $\text{Sp}(n,1)$ acts on $\mathbf{H}_{\mathbb{H}}^{n}$ by isometries. A subgroup $G$ of $\text{Sp}(n,1)$ is called Zariski dense if it neither fixes a point on $\mathbf{H}_{\mathbb{H}}^{n}\cup \unicode[STIX]{x2202}\mathbf{H}_{\mathbb{H}}^{n}$ nor preserves a totally geodesic subspace of $\mathbf{H}_{\mathbb{H}}^{n}$. We prove that a Zariski dense subgroup $G$ of $\text{Sp}(n,1)$ is discrete if for every loxodromic element $g\in G$ the two-generator subgroup $\langle f,gfg^{-1}\rangle$ is discrete, where the generator $f\in \text{Sp}(n,1)$ is a certain fixed element not necessarily from $G$.
In this paper we consider the discreteness of spectrum for higher-order differential operators in weighted function spaces. Using the method of embedding theorems of weighted Sobolev spaces Hnp in weighted spaces Ls,r, we obtain a new sufficient and necessary condition to ensure that the spectrum is discrete, which can be easily used to judge the discreteness of some differential operators.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.