We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subset E of a metric space X is said to be starlike-equivalent if it has a neighbourhood which is mapped homeomorphically into $\mathbb{R}^n$ for some n, sending E to a starlike set. A subset $E\subset X$ is said to be recursively starlike-equivalent if it can be expressed as a finite nested union of closed subsets $\{E_i\}_{i=0}^{N+1}$ such that $E_{i}/E_{i+1}\subset X/E_{i+1}$ is starlike-equivalent for each i and $E_{N+1}$ is a point. A decomposition $\mathcal{D}$ of a metric space X is said to be recursively starlike-equivalent, if there exists $N\geq 0$ such that each element of $\mathcal{D}$ is recursively starlike-equivalent of filtration length N. We prove that any null, recursively starlike-equivalent decomposition $\mathcal{D}$ of a compact metric space X shrinks, that is, the quotient map $X\to X/\mathcal{D}$ is the limit of a sequence of homeomorphisms. This is a strong generalisation of results of Denman–Starbird and Freedman and is applicable to the proof of Freedman’s celebrated disc embedding theorem. The latter leads to a multitude of foundational results for topological 4-manifolds, including the four-dimensional Poincaré conjecture.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.