Let {X
k
, k ≥ 1} be a sequence of independent, identically distributed nonnegative random variables with common distribution function F and finite expectation μ > 0. Under the assumption that the tail probability is consistently varying as x tends to infinity, this paper investigates precise large deviations for both the partial sums S
n
and the random sums S
N(t), where N(·) is a counting process independent of the sequence {X
k
, k ≥ 1}. The obtained results improve some related classical ones. Applications to a risk model with negatively associated claim occurrences and to a risk model with a doubly stochastic arrival process (extended Cox process) are proposed.