A 2D path following control method for Autonomous Underwater Vehicles (AUVs) based on dynamic circle heading modification (DCHM) is presented. The method makes a dynamic auxiliary circle, whose radius depends on the cross-track error e, to intersect the desired path to get a new expected path point, and then determines a modified expected heading for the AUV. The guidance function is achieved by a direct mapping between e and the heading modification value Ψm. Several cases are tested in order to demonstrate the performance of the guidance and control method based on DCHMs for a real AUV. Results show that methods using a convex mapping function between e and Ψm based on our new idea can easily achieve a better convergence of path following, and reduce the error between the actual and desired heading angles. We can also customize a discretionary mapping between e and Ψm to get better path following performance.