We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The 5-HT2A agonist classic psychedelic, psilocybin (O-phosphoryl-4-hydroxy-N,N-dimethyltryptamine) is a tryptophan, indole-based alkaloid present in up to 2% of certain hallucinogenic “magic” mushroom species; typically Psilocybe azurescens, semilanceata, and cyanescens,. In addition, mushrooms may contain psilocin (4-hydroxy-N,N-dimethyltryptamine). Both are indolylalkylamines (tryptamines); other naturally occurring tryptamine compounds include norbaeocystin, baeocystin, norpsilocin, and aeruginascin. A putative synergistic contribution of these compounds has been referred to as the “entourage” effect. Aeruginascin (N,N,N-trimethyl-4-phosphoryloxytryptamine) is found naturally in Inocybe aeruginascens and Pholiotina cyanopus mushroom species and ingestion reportedly invokes elevation in mood without accompanying hallucinogenic effects:
Objectives
To review the pharmacology of aeruginascin and putative entourage effect.
Methods
The extant literature on aeruginascin was reviewed and discussed.
Results
Methylation of aeruginascin results in an active metabolite, 4-hydroxy-N,N,N-trimethyltryptamine (4-HO-TMT) which has been shown to bind at 5-HT1A, 5-HT2A, and 5-HT2B receptors with Inhibition Constants (Ki) of 4400, 670, and 120 nM respectively; compared with psilocybin’s binding of 567.4, 107.2 and 4.6 nM respectively. Further, 4-HO-TMT does not bind at the 5-HT3 receptor, and as a quaternary trimethylammonium compound it is less likely to be able to cross the blood-brain-barrier (BBB).
Conclusions
There are very limited data with respect to the pharmacology of aeruginascin. Its activity at serotonin receptors is less by several orders of magnitude than psilocybin and it has potentially less brain penetrance. Given that it is found in different mushrooms species the data would suggest that its direct contribution to any entourage effect is limited. Further research in needed into other naturally occurring tryptamine compounds.
Disclosure
PC is a member of the Scientific Advisory Board of Zylorion. AA, EB, JC, CE have no disclosures to report.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.