The paper presents an approach where the iterative replication of Discrete Event Simulations on future operational scenarios is used to derive data-driven design merit functions. The presented contribution proposes an extension of the EVOKE (Early Value Oriented Design Exploration with Knowledge Maturity) approach determining when and how the experience-based judgment about maximization, minimization, optimization, and avoidance functions, correlating value drivers and quantified objectives, can be substituted by data-driven mathematical functions obtained by scenarios simulations. The approach is described through a simplified case concerning the development of autonomous electric vehicles to complement the public transport system in the city of Karlskrona in Sweden. The consideration of value drivers and quantified objectives presented is meant to support a preliminary screening of potential design configurations to support the definition of high-level product and system-related functional requirements, to be run before a more detailed conceptual design analysis.