As Cajal discovered in the late 19th century, the bird retina receives a substantial input from the brain. Approximately 10,000 fibers originating in a small midbrain nucleus, the isthmo-optic nucleus (ION), terminate in each retina. The input to the ION is chiefly from the optic tectum which, in the bird, is the primary recipient of retinal input. These neural elements constitute a closed loop, the centrifugal visual system (CVS), beginning and ending in the retina, that delivers positive feedback to active ganglion cells. Several features of the system are puzzling. All fibers from the ION terminate in the ventral retina and an unusual axon-bearing amacrine cell, the target cell, is the postsynaptic partner of these fibers. While the rest of the CVS is orderly and retinotopic, target cell axons project seemingly at random, mostly to distant parts of the retina. We review here the most significant features of the anatomy and physiology of the CVS with a view to understanding its function. We suggest that many of the facts about this system, including some that are otherwise difficult to explain, can be accommodated within the hypothesis that the images of shadows cast on the ground or on objects in the environment, initiate a rapid and parallel search of the sky for a possible aerial predator. If a predator is located, shadow and predator would be temporarily linked together and tracked by the CVS.