Multicoloured tourmalines from Elba Island, commonly display dark-coloured terminations due to incorporation of Fe, and also occasionally Mn. The mechanisms which led to the availability of these elements in the late-stage residual fluids are not yet completely understood. For this purpose, we investigated a representative tourmaline crystal found naturally in two fragments within a wide miarolitic cavity in the Rosina pegmatite (San Piero in Campo, Elba Island, Italy), and characterised by late-stage dark-coloured overgrowths. Microstructural and paragenetic observations, together with compositional and spectroscopic data (electron microprobe and optical absorption spectroscopy), provide evidence which shows that the formation of the dark-coloured Mn-rich overgrowths are the result of a pocket rupture. This event caused alteration of the cavity-coating spessartine garnet by highly-reactive late-stage cavity fluids by leaching processes, with the subsequent release of Mn to the residual fluids. We argue that the two fragments were originally a single crystal, which underwent natural breakage followed by the simultaneous growth of Mn-rich dark terminations at both breakage surfaces. This conclusion supports the evidence for a pocket rupture event, responsible for both the shattering of the tourmaline crystal and the compositional variation of the cavity-fluids related to the availability of Mn, which was incorporated by the tourmaline crystals. Additionally, a comparison of the dark overgrowths formed at the analogous and the antilogous poles, provides information on tourmaline crystallisation at the two different poles. The antilogous pole is characterised by a higher affinity for Ca, F and Ti, and a selective uptake of Mn2+, even in the presence of a considerable amount of Mn3+ in the system. This uneven uptake of Mn ions resulted in the yellow–orange colouration of the antilogous overgrowth (Mn2+ dependent) rather than the purple-reddish colour of the analogous overgrowths (Mn3+ dependent).