We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Assume $G\prec H$ are groups and ${\cal A}\subseteq {\cal P}(G),\ {\cal B}\subseteq {\cal P}(H)$ are algebras of sets closed under left group translation. Under some additional assumptions we find algebraic connections between the Ellis [semi]groups of the G-flow $S({\cal A})$ and the H-flow $S({\cal B})$. We apply these results in the model theoretic context. Namely, assume G is a group definable in a model M and $M\prec ^* N$. Using weak heirs and weak coheirs we point out some algebraic connections between the Ellis semigroups $S_{ext,G}(M)$ and $S_{ext,G}(N)$. Assuming every minimal left ideal in $S_{ext,G}(N)$ is a group we prove that the Ellis groups of $S_{ext,G}(M)$ are isomorphic to closed subgroups of the Ellis groups of $S_{ext,G}(N)$.
Assume G is a group definable in a model M of a stable theory T. We prove that the semigroup SG (M) of complete G-types over M is an inverse limit of some semigroups type-definable in Meq. We prove that the maximal subgroups of SG (M) are inverse limits of some definable quotients of subgroups of G. We consider the powers of types in the semigroup SG (M) and prove that in a way every type in SG (M) is profinitely many steps away from a type in a subgroup of SG (M).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.