A slaughter experiment was carried out to study the effect of dietary protein quality on maintenance energy requirements and energy costs for protein accretion and fat deposition in fast-growing broiler-type male chickens. Three isonitrogenous (200 g crude protein/kg DM) and isoenergetic (14 kJ metabolizable energy (ME)/g DM) semipurified diets based on soyabean meal unsupplemented (diet S) or supplemented with 20 g L-lysine/kg (diet SL) or 2 g DL-methionine/kg (diet SM), in order to promote a decrease or an increase in growth rate respectively, were selected and given at four feeding levels (ad lib. or restricted to 40, 28 and 18 g DM/d, on average) to 10-d-old fast-growing male broiler-type chicks for 2 weeks. Both the efficiency with which ME was used to support growth (kg) and the maintenance requirements (MEm) significantly decreased inversely to the biological value of the dietary protein (kg = 0·660, 0·600 and 0·572; MEm = 597, 522 and 464 k.J/kg W0·75 per d, for diets SI, S and SM respectively). The partial efficiencies of use of ME for protein accretion (kp) or fat deposition (kf) were also inversely related, the former increasing with the quality of the protein offered. An alternative procedure was used to try to overcome the statistical problems inherent in the partition of ME between fat and protein.