Body weight control is thought to be improved when physical activity and energy intake are both high (high energy turnover (ET)). The aim of the present study was to investigate the short-term impact of ET on fat balance during zero energy balance (EB), energetic restriction (ER) and overfeeding (OF). In a randomised crossover study, nine healthy men (BMI: 23·0 (SD 2·1) kg/m2, 26·6 (SD 3·5) years) passed 3 × 3 d in a metabolic chamber: three levels of ET (low, medium and high; physical activity level = 1·3−1·4, 1·5−1·6 and 1·7−1·8) were performed at zero EB, ER and OF (100, 75 and 125 % of individual energy requirement). Different levels of ET were obtained by walking (4 km/h) on a treadmill (0, 165 and 330 min). Twenty-four-hour macronutrient oxidation and relative macronutrient balance (oxidation relative to intake) was calculated, and NEFA, 24-h insulin and catecholamine secretion were analysed as determinants of fat oxidation. During EB and OF, 24-h fat oxidation increased with higher ET. This resulted in a higher relative fat balance at medium ET (EB: +17 %, OF: +14 %) and high ET (EB: +23 %, OF: +17 %) compared with low ET (all P < 0·05). In contrast, ER led to a stimulation of 24-h fat oxidation irrespective of ET (no differences in relative fat balance between ET levels, P > 0·05). In conclusion, under highly controlled conditions, a higher ET improved relative fat balance in young healthy men during OF and EB compared with a sedentary state.