We describe a numerical model to simulate the non-linear elasto-plastic dynamics of compressible materials. The model is fully Eulerian and it is discretized on a fixed Cartesian mesh. The hyperelastic constitutive law considered is neohookean and the plasticity model is based on a multiplicative decomposition of the inverse deformation tensor. The model is thermodynamically consistent and it is shown to be stable in the sense that the norm of the deviatoric stress tensor beyond yield is non increasing. The multimaterial integration scheme is based on a simple numerical flux function that keeps the interfaces sharp. Numerical illustrations in one to three space dimensions of high-speed multimaterial impacts in air are presented.