Plant extracts are currently studied more and more because of the possibility of their usage in plant protection. Many of the natural plant compounds which are used in the control of pests are known to affect the digestion and immune functions of insects. In this study, effects of Artemisia annua extract on the digestive enzymatic profiles and the cellular immune reactions of Eurygaster integriceps were investigated to reach a better understanding of its role in the control of this pest as the most destructive one in the production of wheat in the Near and Middle East, eastern and southern Europe and North Africa. Feeding and injection methods were used to study the plant extract effects on digestive enzymes and cellular immunity, respectively. When adult E. integriceps fed on food and water containing plant extracts, activity of the digestive enzymes, including α-amylase, α- and β-glucosidases, protease and lipase, in addition to cellular immune reactions (total and differentiate hemocyte numbers, phagocytosis, nodule formation and phenoloxidase activity) against Beauveria bassiana were affected and significantly decreased in comparison with controls, in that the clear dose-response relationships were established with respect to enzyme activities and immune reactions. A. annua extract had a significant effect on kinetic parameters (Vmax and Km) of digestive enzymes and phenoloxidase activity so that the presence of the plant extract decreased the value of Vmax and increased Km, causing the reduction of enzyme affinity to the substrate, overall velocity of the reaction and finally interfering with the rate of breakdown of the enzyme-substrate complex. The understanding of fungal-induced immune responses and identification of factors regarding fungal virulence could be important in accelerating host death in a biological control scenario. Hence, the combination of botanical pesticides and microbes to control insect pest populations would be a safe and possibly rapid method to decrease their damage and environmental risk due to the use of chemical pesticides.