In this paper, we present an analytical solution to the general three-dimensional elasticity problem in a layer, whose Young’s modulus varies exponentially within the thickness coordinate and the Poisson’s ratio is constant. By making use of the direct integration method, the complete set of the governing equations in terms of stresses has been formed. The latter equations were reduced to separate equations for each stress-tensor component and then solved by means of the Fourier double-integral transformation with respect to the planar coordinates.