Iterative sampling procedures of a general type in a finite population are considered. They generalize the Reed-Frost process in that binomial sampling is replaced by an arbitrary symmetric sampling defined by a factorial series distribution. Threshold limit theorems are proved saying that the total number of sampled objects is either small with a certain limit distribution, or a finite fraction of the population with a Gaussian limit distribution as the size of the population gets large. These results extend earlier ones for the Reed-Frost process [1], and are proved in a more direct way than before.