We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this study was to investigate the extent to which lung stereotactic body radiotherapy (SBRT) treatment plans can be improved by replacing conventional flattening filter (FF) beams with flattening filter-free (FFF) beams.
Materials and methods:
We selected 15 patients who had received SBRT with conventional 6-MV photon beams for early-stage lung cancer. We imported the patients’ treatment plans into the Eclipse 13·6 treatment planning system, in which we configured the AAA dose calculation model using representative beam data for a TrueBeam accelerator operated in 6-MV FFF mode. We then created new treatment plans by replacing the conventional FF beams in the original plans with FFF beams.
Results:
The FFF plans had better target coverage than the original FF plans did. For the planning target volume, FFF plans significantly improved the D98, D95, D90, homogeneity index and uncomplicated tumour control probability. In most cases, the doses to organs at risk were lower in FFF plans. FFF plans significantly reduced the mean lung dose, V10, V20, V30, and normal tissue complication probability for the total lung and improved the dosimetric indices for the ipsilateral lung. For most patients, FFF beams achieved lower maximum doses to the oesophagus, heart and the spinal cord, and a lower chest wall V30.
Conclusions:
Compared with FF beams, FFF beams achieved lower doses to organs at risk, especially the lung, without compromising tumour coverage; in fact, FFF beams improved coverage in most cases. Thus, replacing FF beams with FFF beams can achieve a better therapeutic ratio.
This study aims to evaluate dosimetric parameters like percentage depth dose, dosimetric field size, depth of maximum dose surface dose, penumbra and output factors measured using IBA CC01 pinpoint chamber, IBA stereotactic field diode (SFD), PTW microDiamond against Monte Carlo (MC) simulation for 6 MV flattening filter-free small fields.
Materials and Methods:
The linear accelerator used in the study was a Varian TrueBeam® STx. All field sizes were defined by jaws. The required shift to effective point of measurement was given for CC01, SFD and microdiamond for depth dose measurements. The output factor of a given field size was taken as the ratio of meter readings normalised to 10 × 10 cm2 reference field size without applying any correction to account for changes in detector response. MC simulation was performed using PRIMO (PENELOPE-based program). The phase space files for MC simulation were adopted from the MyVarian Website.
Results and Discussion:
Variations were seen between the detectors and MC, especially for fields smaller than 2 × 2 cm2 where the lateral charge particle equilibrium was not satisfied. Diamond detector was seen as most suitable for all measurements above 1 × 1 cm2. SFD was seen very close to MC results except for under-response in output factor measurements. CC01 was observed to be suitable for field sizes above 2 × 2 cm2. Volume averaging effect for penumbra measurements in CC01 was observed. No detector was found suitable for surface dose measurement as surface ionisation was different from surface dose due to the effect of perturbation of fluence. Some discrepancies in measurements and MC values were observed which may suggest effects of source occlusion, shift in focal point or mismatch between real accelerator geometry and simulation geometry.
Conclusion:
For output factor measurement, TRS483 suggested correction factor needs to be applied to account for the difference in detector response. CC01 can be used for field sizes above 2 × 2 cm2 and microdiamond detector is suitable for above 1 × 1 cm2. Below these field sizes, perturbation corrections and volume averaging corrections need to be applied.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.