We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To assess whether exposure to fast-food outlets around schools differed depending on socio-economic status (SES).
Design
Binary logistic regression was used to investigate the presence and zero-inflated Poisson regression was used for the count (due to the excess of zeroes) of fast food within 1000 m and 15000 m road network buffers around schools. The low and middle SES tertiles were combined due to a lack of significant variation as the ‘disadvantaged’ group and compared with the high SES tertile as the ‘advantaged’ group. School SES was expressed using the 2011 Australian Bureau of Statistics, socio-economic indices for areas, index of relative socio-economic disadvantage. Fast-food data included independent takeaway food outlets and major fast-food chains.
Setting
Metropolitan Adelaide, South Australia.
Subjects
A total of 459 schools were geocoded to the street address and 1000 m and 1500 m road network distance buffers calculated.
Results
There was a 1·6 times greater risk of exposure to fast food within 1000 m (OR=1·634; 95 % 1·017, 2·625) and a 9·5 times greater risk of exposure to a fast food within 1500 m (OR=9·524; 95 % CI 3·497, 25·641) around disadvantaged schools compared with advantaged schools.
Conclusions
Disadvantaged schools were exposed to more fast food, with more than twice the number of disadvantaged schools exposed to fast food. The higher exposure to fast food near more disadvantaged schools may reflect lower commercial land cost in low-SES areas, potentially creating more financially desirable investments for fast-food developers.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.