We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter we present examples of earthquake-induced geomorphology in Northern Europe ranging from the readily visible surface expression to more subtle and complex landforms.
Stress changes in the subsurface created by loading and unloading of the ice sheets can result in reactivation of deep-seated faults. Glacially induced faulting can happen during the glaciation in a proglacial or subglacial setting, in a distal setting away from the ice margin or in a postglacial setting after the ice sheet has melted away. Thus, the timing and the location of the tectonic event is important for the resulting landform creation or landform change. Identification of earthquake-induced landforms can be used in interpretations of palaeoseismic events, for location of previously unrecognized fault zones and in evaluations of the likelihood of future seismic events. Interpretations of earthquake-induced landforms in and around former glaciated areas can therefore add important information to interpretations of both the Quaternary geology and the deep structural framework.
Despite early studies indicating fault rupture both before and after deglaciation, it has long been hypothesized that glacially induced faults in Fennoscandia ruptured only once. The now widespread availability of high-resolution digital elevation models allows for testing this hypothesis by examining cross-cutting relationships between the scarps and both glacial and postglacial landforms. Although not widespread, such cross-cutting relationships indicate that segments of the Merasjärvi, Lainio and Pärvie faults have ruptured at least twice. The timing of the Merasjärvi ruptures is unknown; the Lainio ruptures occurred both before and after deglaciation, and at least one of the Pärvie ruptures is postglacial.
Additionally, it can be demonstrated that parallel segments of the Pärvie and Lansjärv faults ruptured at different times despite being only a few kilometres from each other. Given these results, the single rupture hypothesis must be reassessed for the high-relief scarps in northern Sweden, but it may still hold true for some of the low-relief scarps.
Using information from airborne light detection and ranging (LiDAR) data has produced a breakthrough in identification of postglacial faults and earthquake-deformed Quaternary deposits. LiDAR digital elevation models (DEMs) also improve the collection of detailed information on their spatial distribution, characteristics and geometry, and provides guidance for the more costly and time-consuming field studies. In areas of weak glacial erosion, younger and older (i.e. Pre-Late Weichselian) ruptures have been discovered superimposed on the same or adjacent postglacial fault segments, as has been identified when combining the DEM information and test pit sedimentological studies. We discuss Finnish examples and identify advantages, disadvantages and limitations. Advantages include verification of previously known fault scarps, detection of new postglacial fault segments, systems and entire complexes and the ability to measure the dimensions (lengths and offset) of the fault scarps from the LiDAR DEM data. Disadvantages include that inventory of the sub- and postglacial fault scarps is only possible when linear scarps cross-cut glacial and postglacial sediments.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.