Seeds from natural populations of fierce thornapple and velvetleaf collected in a corn-growing area in central Spain were incubated at a range of constant temperatures and water potentials to model the progress of germination on the basis of the accumulation of hydrothermal time. Previous to the germination tests, the seeds were treated in two different ways: (1) dark storage under dry conditions (nonchilled seeds), and (2) burying in the original soil at 10-cm depth during 2 mo in winter (naturally chilled seeds). The results indicated different mechanisms inhibiting germination in both weed species. Whereas fierce thornapple displayed some type of embryo dormancy, the lack of germination in velvetleaf appeared to be entirely due to the seed coat. On the other hand, significant differences between nonchilled and naturally chilled seeds in fierce thornapple were observed, mainly due to the decrease in the mean base water potential of the 50th percentile in the latter, which indicated a loss of dormancy by exposure of the seeds to natural conditions. Hydrothermal time appears to be a good description of the germination patterns in both weed species, but in the case of fierce thornapple, only for naturally chilled seeds. Thus, the development of the hydrothermal model in fierce thornapple raises some questions for consideration concerning the influence of the type of seeds (conditions of storage, pretreatments of the seeds before germination tests) on its germination capacity.