We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Renal Replacement Therapies generally associated to the Artificial Kidney (AK) are membrane-based treatments that assure the separation functions of the failing kidney in extracorporeal blood circulation. Their progress from conventional hemodialysis towards high-flux hemodialysis (HFHD) through the introduction of ultrafiltration membranes characterized by high convective permeation fluxes intensified the need of elucidating the effect of the membrane fluid removal rates on the increase of the potentially blood-traumatizing shear stresses developed adjacently to the membrane. The AK surrogate consisting of two-compartments separated by an ultrafiltration membrane is set to have water circulation in the upper chamber mimicking the blood flow rates and the membrane fluid removal rates typical of HFHD. Pressure drop mirrors the shear stresses quantification and the modification of the velocities profiles. The increase on pressure drop when comparing flows in slits with a permeable membrane and an impermeable wall is ca. 512% and 576% for $ \mathrm{CA}22/5\%{\mathrm{SiO}}_2 $ and $ \mathrm{CA}30/5\%{\mathrm{SiO}}_2 $ membranes, respectively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.