We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To validate an automated food image identification system, DietCam, which has not been validated, in identifying foods with different shapes and complexities from passively taken digital images.
Design:
Participants wore Sony SmartEyeglass that automatically took three images per second, while two meals containing four foods, representing regular- (i.e., cookies) and irregular-shaped (i.e., chips) foods and single (i.e., grapes) and complex (i.e., chicken and rice) foods, were consumed. Non-blurry images from the meals’ first 5 min were coded by human raters and compared with DietCam results. Comparisons produced four outcomes: true positive (rater/DietCam reports yes for food), false positive (rater reports no food; DietCam reports food), true negative (rater/DietCam reports no food) or false negative (rater reports food; DietCam reports no food).
Setting:
Laboratory meal.
Participants:
Thirty men and women (25·1 ± 6·6 years, 22·7 ± 1·6 kg/m2, 46·7 % White).
Results:
Identification accuracy was 81·2 and 79·7 % in meals A and B, respectively (food and non-food images) and 78·7 and 77·5 % in meals A and B, respectively (food images only). For food images only, no effect of food shape or complexity was found. When different types of images, such as 100 % food in the image and on the plate, <100 % food in the image and on the plate and food not on the plate, were analysed separately, images with food on the plate had a slightly higher accuracy.
Conclusions:
DietCam shows promise in automated food image identification, and DietCam is most accurate when images show food on the plate.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.