In the field of multifingered mechanisms the control/command problem is mainly a problem o1 coordination. The problem is not only to coordinate joints of a chains but also to coordinate the different chains together.
This paper presents a general and efficient method for implementing the control/command of such systems, taking into account the force distribution problem. To solve this problem it is necessary to pay great attention to dynamic effects. To do this, we broke down the Inverse Dynamic Model (I.D.M.) problem into two main levels; One level is devoted to I.D.M. computation; it can be called the Finger Level (F.L.). As we wanted to divide up the work to be done as much as possible, we subdivided the Finger Level according to the number o1 kinematic chains. In addition, we considered a second level, the Coordinator. This level has to control all the chains using the Fingers-to-Object-Interaction Model (F.O.LM.).
Next, we will also introduce new grasping systems: Polyvalent Gripper Systems (P.G.S). There are a new solution to multicomponent assembly problems. As they can be equipped with several multifingered mechanisms, they can also use the control/command scheme.