We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Convergence analysis is presented for recently proposed multistep schemes, when applied to a special type of forward-backward stochastic differential equations (FB-SDEs) that arises in finance and stochastic control. The corresponding k-step scheme admits a k-order convergence rate in time, when the exact solution of the forward stochastic differential equation (SDE) is given. Our analysis assumes that the terminal conditions and the FBSDE coefficients are sufficiently regular.
We consider a system of fully coupled forward-backward stochasticdifferential equations. First we generalize the results ofPardoux-Tang [7] concerning the regularity of the solutions withrespect to initial conditions. Then, we prove that in some particularcases this system leads to aprobabilistic representation of solutions of a second-order PDE whosesecond order coefficients depend on the gradient of the solution. Wethen give some examples in dimension 1 and dimension 2 for which theassumptions are easy to check.
In this paper we study the problem of pricing contingent claims for a large investor (i.e. the coefficients of the price equation can also depend on the wealth process of the hedger) in an incomplete market where the portfolios are constrained. We formulate this problem so as to find the minimal solution of forward-backward stochastic differential equations (FBSDEs) with constraints. We use the penalization method to construct a sequence of FBSDEs without constraints, and we show that the solutions of these equations converge to the minimal solution we are interested in.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.