It is known that the Fourier–Stieltjes coefficients of a nonatomic coin-tossing measure may not vanish at infinity. However, we show that they could vanish at infinity along some integer subsequences, including the sequence ${\{b^{n}\}}_{n\geq 1}$ where $b$ is multiplicatively independent of 2 and the sequence given by the multiplicative semigroup generated by 3 and 5. The proof is based on elementary combinatorics and lower-bound estimates for linear forms in logarithms from transcendental number theory.