This paper presents a novel control algorithm for electrically driven robot manipulators. The proposed control law is simple and model-free based on the voltage control strategy with the decentralized structure and only joint position feedback. It works for both repetitive and non-repetitive tasks. Recently, some control approaches based on the uncertainty estimation using the Fourier series have been presented. However, the proper value for the fundamental period duration has been left as an open problem. This paper addresses this issue and intuitively shows that in order to perform repetitive tasks; the least common multiple (LCM) of fundamental period durations of the desired trajectories of the joints is a proper value for the fundamental period duration of the Fourier series expansion. Selecting the LCM results in the least tracking error. Moreover, the truncation error is compensated by the proposed control law to make the tracking error as small as possible. Adaptation laws for determining the Fourier series coefficients are derived according to the stability analysis. The case study is an SCARA robot manipulator driven by permanent magnet DC motors. Simulation results and comparisons with a voltage-based controller using adaptive neuro-fuzzy systems show the effectiveness of the proposed control approach in tracking various periodic trajectories. Moreover, the experimental results on a real SCARA robot manipulator verify the successful practical implementation of the proposed controller.