Turmeric (Curcuma longa L.) is rich in curcuminoids, which are polyphenolic pigments make it one of the most valuable spice and medicinal plant. The rising need for natural colours and the numerous health advantages of curcuminoids are driving up the demand of turmeric. In this study, the effects of genotype and genotype × environment on the colour characteristics of 21 turmeric genotypes were examined in three different production environments namely vertical farming, greenhouse, and field conditions. The pooled analysis of variance revealed highly significant (P < 0.05) differences among genotypes (G), environments (E), and G × E interaction for three colour parameters [L* (lightness index), A* (redness index), B* (yellowness index)]. Among the genotypes, the values ranged from 41.80 to 54.76, 13.92 to 24.83 and 31.72 to 47.67 for L*, A*, B*, respectively. Erode Local (22.34), IISR Pragati (24.56) and IISR Prathiba (26.55) recorded maximum A* value under vertical farming, greenhouse, and field conditions, respectively. Correlation analysis between colour values and curcuminoids revealed a significant positive correlation (r = 0.608–0.735, P < 0.001) between A* value and curcuminoids. Furthermore, stability analysis for A* value revealed 78.87% genotype × environment interaction (GEI) from the first two principal components of GGE biplot. IISR Pragati and Waigon Turmeric are best was most stable for A* value across environments. Our study revealed that colour traits among genotypes vary widely and are strongly impacted by genetic and environmental factors. These findings are crucial for future breeding programs to enhance turmeric's colour, ensuring high-quality, stable products for producers and consumers.