In this paper, we establish that if an interarrival time exceeds a service time with a positive probability then the queueing system GI/G/s with a finite waiting room always has proper limiting distributions for its characteristics such as queue length, waiting time and the remaining service times of the customers being served. The result remains valid if we consider a GI/G/s system with bounded waiting times. A technique is also given to establish that for a system with Poisson arrivals the limiting distributions of the queueing characteristics at an epoch of arrival and at an arbitrary epoch are identical.