We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Wepresent the theory as a number of postulates about a mathematical model for spacetime.
In §3.1 we introduce the mathematical model and in §3.2 the first two postulates, local causality and local energy conservation. These postulates are common to both special and general relativity, and thus may be regarded as tested by the many experiments that have been performed to check the former. In §3.3 we derive the equations of the matter fields and obtain the energy–momentum tensor from a Lagrangian.
The third postulate, the field equations, is given in §3.4. This is not so well established experimentally as the first two postulates, but we shall see that any alternative equations would seem to have one or more undesirable properties, or else require the existence of extra fields which have not yet been detected experimentally.
The mathematical model we shall use for spacetime, i.e. the collection of all events, is a pair (ℳ, g) where ℳ is a connected four-dimensional Hausdorff C∞ manifold and g is a Lorentz metric (i.e. a metric of signature + 2) on ℳ.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.