We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well-posed in all subcritical and most of the critical regimes. For the (renormalized) defocusing cubic SNLB, we establish pathwise global well-posedness below the energy space, by adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the I-method with a Gronwall-type argument. Lastly, we show almost sure global well-posedness and invariance of the Gibbs measure for the stochastic damped nonlinear beam equations in the defocusing case.
Given the full shift over a countable state space on a countable amenable group, we develop its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques, prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of different notions of Gibbs measures and prove their existence and equivalence, given some regularity and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where uniqueness holds.
Given a locally finite graph $\Gamma $, an amenable subgroup G of graph automorphisms acting freely and almost transitively on its vertices, and a G-invariant activity function $\unicode{x3bb} $, consider the free energy $f_G(\Gamma ,\unicode{x3bb} )$ of the hardcore model defined on the set of independent sets in $\Gamma $ weighted by $\unicode{x3bb} $. Under the assumption that G is finitely generated and its word problem can be solved in exponential time, we define suitable ensembles of hardcore models and prove the following: if $\|\unicode{x3bb} \|_\infty < \unicode{x3bb} _c(\Delta )$, there exists a randomized $\epsilon $-additive approximation scheme for $f_G(\Gamma ,\unicode{x3bb} )$ that runs in time $\mathrm {poly}((1+\epsilon ^{-1})\lvert \Gamma /G \rvert )$, where $\unicode{x3bb} _c(\Delta )$ denotes the critical activity on the $\Delta $-regular tree. In addition, if G has a finite index linearly ordered subgroup such that its algebraic past can be decided in exponential time, we show that the algorithm can be chosen to be deterministic. However, we observe that if $\|\unicode{x3bb} \|_\infty> \unicode{x3bb} _c(\Delta )$, there is no efficient approximation scheme, unless $\mathrm {NP} = \mathrm {RP}$. This recovers the computational phase transition for the partition function of the hardcore model on finite graphs and provides an extension to the infinite setting. As an application in symbolic dynamics, we use these results to develop efficient approximation algorithms for the topological entropy of subshifts of finite type with enough safe symbols, we obtain a representation formula of pressure in terms of random trees of self-avoiding walks, and we provide new conditions for the uniqueness of the measure of maximal entropy based on the connective constant of a particular associated graph.
Let $ T:[0,1]\to [0,1] $ be an expanding Markov map with a finite partition. Let $ \mu _\phi $ be the invariant Gibbs measure associated with a Hölder continuous potential $ \phi $. For $ x\in [0,1] $ and $ \kappa>0 $, we investigate the size of the uniform approximation set
$$ \begin{align*}\mathcal U^\kappa(x):=\{y\in[0,1]:\text{ for all } N\gg1, \text{ there exists } n\le N, \text{ such that }|T^nx-y|<N^{-\kappa}\}.\end{align*} $$
The critical value of $ \kappa $ such that $ \operatorname {\mathrm {\dim _H}}\mathcal U^\kappa (x)=1 $ for $ \mu _\phi $-almost every (a.e.) $ x $ is proven to be $ 1/\alpha _{\max } $, where $ \alpha _{\max }=-\int \phi \,d\mu _{\max }/\int \log |T'|\,d\mu _{\max } $ and $ \mu _{\max } $ is the Gibbs measure associated with the potential $ -\log |T'| $. Moreover, when $ \kappa>1/\alpha _{\max } $, we show that for $ \mu _\phi $-a.e. $ x $, the Hausdorff dimension of $ \mathcal U^\kappa (x) $ agrees with the multifractal spectrum of $ \mu _\phi $.
We show that the
$4$
-state anti-ferromagnetic Potts model with interaction parameter
$w\in (0,1)$
on the infinite
$(d+1)$
-regular tree has a unique Gibbs measure if
$w\geq 1-\dfrac{4}{d+1_{_{\;}}}$
for all
$d\geq 4$
. This is tight since it is known that there are multiple Gibbs measures when
$0\leq w\lt 1-\dfrac{4}{d+1}$
and
$d\geq 4$
. We moreover give a new proof of the uniqueness of the Gibbs measure for the
$3$
-state Potts model on the
$(d+1)$
-regular tree for
$w\geq 1-\dfrac{3}{d+1}$
when
$d\geq 3$
and for
$w\in (0,1)$
when
$d=2$
.
In this note, we study the hyperbolic stochastic damped sine-Gordon equation (SdSG), with a parameter β2 > 0, and its associated Gibbs dynamics on the two-dimensional torus. After introducing a suitable renormalization, we first construct the Gibbs measure in the range 0 < β2 < 4π via the variational approach due to Barashkov-Gubinelli (2018). We then prove almost sure global well-posedness and invariance of the Gibbs measure under the hyperbolic SdSG dynamics in the range 0 < β2 < 2π. Our construction of the Gibbs measure also yields almost sure global well-posedness and invariance of the Gibbs measure for the parabolic sine-Gordon model in the range 0 < β2 < 4π.
We prove a comprehensive version of the Ruelle–Perron–Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previously known estimates.
Random arrangements of points in the plane, interacting only through a simple hard-core exclusion, are considered. An intensity parameter controls the average density of arrangements, in analogy with the Poisson point process. It is proved that, at high intensity, an infinite connected cluster of excluded volume appears almost surely.
Juggler's exclusion process describes a system of particles on the positive integers where particles drift down to zero at unit speed. After a particle hits zero, it jumps into a randomly chosen unoccupied site. We model the system as a set-valued Markov process and show that the process is ergodic if the family of jump height distributions is uniformly integrable. In a special case where the particles jump according to a set-avoiding memoryless distribution, the process reaches its equilibrium in finite nonrandom time, and the equilibrium distribution can be represented as a Gibbs measure conforming to a linear gravitational potential.
Gibbs fields are constructed and studied which correspond to systems of real-valued spins (e.g. systems of interacting anharmonic oscillators) indexed by the vertices of unbounded degree graphs of a certain type, for which the Gaussian Gibbs fields need not be existing. In these graphs, the vertex degree growth is controlled by a summability requirement formulated with the help of a generalized Randić index. In particular, it is proven that the Gibbs fields obey uniform integrability estimates, which are then used in the study of the topological properties of the set of Gibbs fields. In the second part, a class of graphs is introduced in which the mentioned summability is obtained by assuming that the vertices of large degree are located at large distances from each other. This is a stronger version of the metric property employed in Bassalygo and Dobrushin (1986).
The primary objective of this work is to develop coarse-grainingschemes for stochastic many-body microscopic models and quantify theireffectiveness in terms of a priori and a posteriori error analysis. Inthis paper we focus on stochastic lattice systems ofinteracting particles at equilibrium. The proposed algorithms are derived from an initial coarse-grainedapproximation that is directly computable by Monte Carlo simulations, and the corresponding numerical error is calculated using the specific relative entropy between the exact and approximate coarse-grained equilibrium measures. Subsequently we carry out a cluster expansion around this first – and often inadequate – approximation and obtain more accurate coarse-graining schemes.The cluster expansions yield also sharp a posteriori error estimates forthe coarse-grained approximations that can be used for the construction ofadaptive coarse-graining methods. We present a number of numerical examples that demonstrate that thecoarse-graining schemes developed here allow for accurate predictions of critical behavior and hysteresis in systems with intermediate and long-range interactions. We also present examples where they substantially improvepredictions of earlier coarse-graining schemes for short-range interactions.
We consider an infinite system of hard balls in $\xR^d$ undergoing Brownian motionsand submitted to a smooth pair potential.It is modelized by an infinite-dimensional stochastic differential equationwith an infinite-dimensional local time term.Existence and uniqueness of a strong solution is proven for such an equation with fixed deterministic initial condition. We also showthat Gibbs measures are reversible measures.
For an independent percolation model on , where is a homogeneous tree and is a one-dimensional lattice, it is shown, by verifying that the triangle condition is satisfied, that the percolation probability θ (p) is a continuous function of p at the critical point pc, and the critical exponents , γ, δ, and Δ exist and take their mean-field values. Some analogous results for Markov fields on are also obtained.
The Voronoi tessellation generated by a Gibbs point process is considered. Using the algebraic formalism of polymer expansion, the limit theorem and the large deviation principle for the number of Voronoi vertices are proved.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.