We derive Laplace transform identities for the volume content of random stopping sets based on Poisson point processes. Our results are based on anticipating Girsanov identities for Poisson point processes under a cyclic vanishing condition for a finite difference gradient. This approach does not require classical assumptions based on set-indexed martingales and the (partial) ordering of index sets. The examples treated focus on stopping sets in finite volume, and include the random missed volume of Poisson convex hulls.