The superfused retinal slice preparation was used to examine the morphology and glutamate-activated whole-cell currents of rabbit bipolar cells. There were six morphologically distinct types of cone bipolar cells and a rod bipolar cell that had axon terminals stratifying in stratum 3 to 5 of sublamina-b. All of these bipolar cell types exhibited an outward current in response to the application of the metabotropic glutamate receptor, mGluR6, agonist AP-4 (APB), and had I/V curves indicative of membrane channel closure. Conversely, there were no currents activated during the application of kainate, the AMPA/kainate receptor agonist. These data demonstrate they were on-bipolar cells. In addition, there were six morphologically distinct cone bipolar cells that stratified in sublamina-a. Every cell with axonal arborizations in stratum 1 and 2 exhibited an inward current when the ionotropic glutamate receptor agonist kainate was applied. This current was blocked by application of the AMPA/kainate receptor antagonist CNQX. These cells also decreased their membrane resistance in response to kainate, a characteristic of the opening of channels within the plasma membrane. Without exception, no cells stratifying in sublamina-a responded to the mGluR6 agonist AP-4, further identifying them as off-bipolar cells.