We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, an $\textrm{H}_{{\infty }}$ dynamic output feedback controller is experimentally implemented for the position regulation of a fully actuated tilted-rotor octocopter unmanned aerial vehicle (UAV) to improve wind disturbance rejection during station-keeping. To apply the lateral forces, besides the standard tilt-to-translate (attitude-thrust) movement, tilted-rotor UAVs can generate vectored (horizontal) thrust. Vectored-thrust is high-bandwidth but saturation-constrained, while attitude-thrust generates larger forces with lower bandwidth. For the first time, this paper emphasizes the frequency-dependent allocation of weighting matrices in $\textrm{H}_{{\infty }}$ control design based on the physical capabilities of the fully actuated UAV (vectored-thrust and attitude-thrust). A dynamic model of the tilted-rotor octocopter, including aerodynamic effects and rotor dynamics, is presented to design the controller. The proposed $\textrm{H}_{{\infty }}$ controller solves the frequency-dependent actuator allocation problem by augmenting the dynamic model with weighting transfer functions. This novel frequency-dependent allocation utilizes the attitude-thrust for low-frequency disturbances and vectored-thrust for high-frequency disturbances, which exploits the maximum potential of the fully actuated UAV. Several wind tunnel experiments are conducted to validate the model and wind disturbance rejection performance, and the results are compared to the baseline PX4 Autopilot controller on both the tilted-rotor and a planar octocopter. The $\textrm{H}_{{\infty }}$controller is shown to reduce station-keeping error by up to 50% for an actuator usage 25% higher in free-flight tests.
This paper considers the problem of a three-axis flexible satellite attitude stabilisation subject to the vibration of flexible appendages and external environmental disturbances, which affect the rigid body motion. To solve this problem, a disturbance observer is proposed to estimate and thereby reject the flexible appendage vibration. Based on the H∞ and Linear Matrix Inequality (LMI) approach, a controller for spacecraft with flexible appendages is proposed to ensure robustness as well as attitude stability with high precision. Stability analysis of the overall closed-loop system is provided via the Lyapunov method. The simulation results of three-axis flexible spacecraft demonstrate the robustness and effectiveness of the proposed method.
A conservatism-reduced design of a gain scheduled output feedback H∞ controller for an n-joint rigid robotic manipulator, which integrates the varying-parameter rate without their feedback, is proposed. The robotic system is reduced to a 1inear parameter varying (LPV) form, which depends on the varying-parameter. By using a parameter-dependent Lyapunov function, the design of a controller, which satisfies the closed-loop H∞ performance, is reduced to a solution of the parameterized linear matrix inequalities (LMIs) of parameter matrices. With a use of the concept of “multi-convexity”, the solution of the infinite LMIs in the varying-parameter and its rate space is reduced to a solution of the finite LMIs for the vertex set. The proposed controller eliminates the feedback of the varying-parameter rate and fixes its upper boundary so that the conservatism of the controller design is reduced. Experimental results verify the effectiveness of the proposed design.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.