A generalization of first-passage percolation theory proves that the fundamental convergence theorems hold provided only that the time coordinate distribution has a finite moment of a positive order. The existence of a time constant is proved by considering first-passage times between intervals of sites, rather than the usual point-to-point and point-to-line first-passage times. The basic limit theorems for the related stochastic processes follow easily by previous techniques. The time constant is evaluated as 0 when the atom at 0 of the time-coordinate distribution exceeds½.