We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider a Brownian motion on the circumference of the unit circle, which jumps to the opposite point of the circumference at incident times of an independent Poisson process of rate $\lambda$. We examine the problem of coupling two copies of this ‘jumpy Brownian motion’ started from different locations, so as to optimise certain functions of the coupling time. We describe two intuitive co-adapted couplings (‘Mirror’ and ‘Synchronous’) which differ only when the two processes are directly opposite one another, and show that the question of which strategy is best depends upon the jump rate $\lambda$ in a non-trivial way. We also provide an explicit description of a (non-co-adapted) maximal coupling for any jump rate in the case that the two jumpy Brownian motions begin at antipodal points of the circle.
We consider an insurance company modelling its surplus process by a Brownian motion with drift. Our target is to maximise the expected exponential utility of discounted dividend payments, given that the dividend rates are bounded by some constant. The utility function destroys the linearity and the time-homogeneity of the problem considered. The value function depends not only on the surplus, but also on time. Numerical considerations suggest that the optimal strategy, if it exists, is of a barrier type with a nonlinear barrier. In the related article of Grandits et al. (Scand. Actuarial J.2, 2007), it has been observed that standard numerical methods break down in certain parameter cases, and no closed-form solution has been found. For these reasons, we offer a new method allowing one to estimate the distance from an arbitrary smooth-enough function to the value function. Applying this method, we investigate the goodness of the most obvious suboptimal strategies—payout on the maximal rate, and constant barrier strategies—by measuring the distance from their performance functions to the value function.
We formalize a consumption–investment–insurance problem with the distinction of a state-dependent relative risk aversion. The state dependence refers to the state of the finite state Markov chain that also formalizes insurable risks such as health and lifetime uncertainty. We derive and analyze the implicit solution to the problem, compare it with special cases in the literature, and illustrate the range of results in a disability model where the relative risk aversion is preserved, decreases, or increases upon disability.
In this paper, we derive the optimal cyclical design of a target benefit (TB) pension plan that balances the sustainability and the benefit stability using the optimal control approach. The optimal design possesses a linear risk sharing structure with cyclical parameters. We observe that the optimal design should be pro-cyclical in the usual circumstances, but counter-cyclical when the pension plan is severely in deficit. We compare the TB plans with the defined benefit plans and conclude that a more aggressive investment strategy should be adopted for the TB plans. In the end, we provide a cautionary note on the optimal control approach in the study of the TB plans.
A diffusion approximation to a risk process under dynamic proportional reinsurance is considered. The goal is to minimise the discounted time in drawdown; that is, the time where the distance of the present surplus to the running maximum is larger than a given level
$d > 0$
. We calculate the value function and determine the optimal reinsurance strategy. We conclude that the drawdown measure stabilises process paths but has a drawback as it also prevents surpassing the initial maximum. That is, the insurer is, under the optimal strategy, not interested in any more profits. We therefore suggest using optimisation criteria that do not avoid future profits.
We consider the optimal portfolio and consumption problem for a jump-diffusion process with regime switching. Under the criterion of maximizing the expected discounted total utility of consumption, two methods, namely, the dynamic programming principle and the stochastic maximum principle, are used to obtain the optimal result for the general objective function, which is the solution to a system of partial differential equations. Furthermore, we investigate the power utility as a specific example and analyse the existence and uniqueness of the optimal solution. Under the constraints of no-short-selling and nonnegative consumption, closed-form expressions for the optimal strategy and the value function are derived. Besides, some comparisons between the optimal results for the jump-diffusion model and the pure diffusion model are carried out. Finally, we discuss our optimal results in some special cases.
Motivated by Avram, Vu and Zhou (2017), Kyprianou and Zhou (2009), Li, Vu and Zhou (2017), Wang and Hu (2012), and Wang and Zhou (2018), we consider in this paper the problem of maximizing the expected accumulated discounted tax payments of an insurance company, whose reserve process (before taxes are deducted) evolves as a spectrally negative Lévy process with the usual exclusion of negative subordinator or deterministic drift. Tax payments are collected according to the very general loss-carry-forward tax system introduced in Kyprianou and Zhou (2009). To achieve a balance between taxation optimization and solvency, we consider an interesting modified objective function by considering the expected accumulated discounted tax payments of the company until the general draw-down time, instead of until the classical ruin time. The optimal tax return function and the optimal tax strategy are derived, and some numerical examples are also provided.
In this paper we establish a new connection between a class of two-player nonzero-sum games of optimal stopping and certain two-player nonzero-sum games of singular control. We show that whenever a Nash equilibrium in the game of stopping is attained by hitting times at two separate boundaries, then such boundaries also trigger a Nash equilibrium in the game of singular control. Moreover, a differential link between the players' value functions holds across the two games.
We consider a finite-time optimal consumption problem where an investor wants to maximize the expected hyperbolic absolute risk aversion utility of consumption and terminal wealth. We treat a stochastic factor model in which the mean returns of risky assets depend linearly on underlying economic factors formulated as the solutions of linear stochastic differential equations. We discuss the partial information case in which the investor cannot observe the factor process and uses only past information of risky assets. Then our problem is formulated as a stochastic control problem with partial information. We derive the Hamilton–Jacobi–Bellman equation. We solve this equation to obtain an explicit form of the value function and the optimal strategy for this problem. Moreover, we also introduce the results obtained by the martingale method.
We consider a two-dimensional optimal dividend problem in the context of two insurance companies with compound Poisson surplus processes, who collaborate by paying each other's deficit when possible. We study the stochastic control problem of maximizing the weighted sum of expected discounted dividend payments (among all admissible dividend strategies) until ruin of both companies, by extending results of univariate optimal control theory. In the case that the dividends paid by the two companies are equally weighted, the value function of this problem compares favorably with the one of merging the two companies completely. We identify the optimal value function as the smallest viscosity supersolution of the respective Hamilton–Jacobi–Bellman equation and provide an iterative approach to approximate it numerically. Curve strategies are identified as the natural analogue of barrier strategies in this two-dimensional context. A numerical example is given for which such a curve strategy is indeed optimal among all admissible dividend strategies, and for which this collaboration mechanism also outperforms the suitably weighted optimal dividend strategies of the two stand-alone companies.
We consider an insurance entity endowed with an initial capital and a surplus process modelled as a Brownian motion with drift. It is assumed that the company seeks to maximise the cumulated value of expected discounted dividends, which are declared or paid in a foreign currency. The currency fluctuation is modelled as a Lévy process. We consider both cases: restricted and unrestricted dividend payments. It turns out that the value function and the optimal strategy can be calculated explicitly.
We consider the optimal proportional reinsurance problem for an insurer with two dependent classes of insurance business, where the two claim number processes are correlated through a common shock component. Using the technique of stochastic linear–quadratic control theory and the Hamilton–Jacobi–Bellman equation, we derive the explicit expressions for the optimal reinsurance strategies and value function, and present the verification theorem within the framework of the viscosity solution. Furthermore, we extend the results in the linear–quadratic setting to the mean–variance problem, and obtain an efficient strategy and frontier. Some numerical examples are given to show the impact of model parameters on the efficient frontier.
We study the optimal proportional reinsurance and investment problem in a general jump-diffusion financial market. Assuming that the insurer’s surplus process follows a jump-diffusion process, the insurer can purchase proportional reinsurance from the reinsurer and invest in a risk-free asset and a risky asset, whose price is modelled by a general jump-diffusion process. The insurance company wishes to maximize the expected exponential utility of the terminal wealth. By using techniques of stochastic control theory, closed-form expressions for the value function and optimal strategy are obtained. A Monte Carlo simulation is conducted to illustrate that the closed-form expressions we derived are indeed the optimal strategies, and some numerical examples are presented to analyse the impact of model parameters on the optimal strategies.
We investigate two mean–variance optimization problems for a single cohort of workers in an accumulation phase of a defined benefit pension scheme. Since the mortality intensity evolves as a general Markov diffusion process, the liability is random. The fund manager aims to cover this uncertain liability via controlling the asset allocation strategy and the contribution rate. In order to have a more realistic model, we study the case when the risk aversion depends dynamically on current wealth. By solving an extended Hamilton–Jacobi–Bellman system, we obtain analytical solutions for the equilibrium strategies and value function which depend on both current wealth and mortality intensity. Moreover, results for the constant risk aversion are presented as special cases of our models.
A deterministic affine-quadratic optimal control problem is considered. Due to the nature of the problem, optimal controls exist under some very mild conditions. Further, it is shown that under some assumptions, the optimal control is unique which leads to the differentiability of the value function. Therefore, the value function satisfies the corresponding Hamilton–Jacobi–Bellman equation in the classical sense, and the optimal control admits a state feedback representation. Under some additional conditions, it is shown that the value function is actually twice differentiable and the so-called quasi-Riccati equation is derived, whose solution can be used to construct the state feedback representation for the optimal control.
We propose and analyse a method based on the Riccati transformation for solving the evolutionary Hamilton–Jacobi–Bellman equation arising from the dynamic stochastic optimal allocation problem. We show how the fully nonlinear Hamilton–Jacobi–Bellman equation can be transformed into a quasilinear parabolic equation whose diffusion function is obtained as the value function of a certain parametric convex optimization problem. Although the diffusion function need not be sufficiently smooth, we are able to prove existence and uniqueness and derive useful bounds of classical Hölder smooth solutions. Furthermore, we construct a fully implicit iterative numerical scheme based on finite volume approximation of the governing equation. A numerical solution is compared to a semi-explicit travelling wave solution by means of the convergence ratio of the method. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 index as an example of the application of the method.
In this paper we introduce discrete-time semi-Markov random evolutions (DTSMREs) and study asymptotic properties, namely, averaging, diffusion approximation, and diffusion approximation with equilibrium by the martingale weak convergence method. The controlled DTSMREs are introduced and Hamilton–Jacobi–Bellman equations are derived for them. The applications here concern the additive functionals (AFs), geometric Markov renewal chains (GMRCs), and dynamical systems (DSs) in discrete time. The rates of convergence in the limit theorems for DTSMREs and AFs, GMRCs, and DSs are also presented.
We consider an insurance company whose surplus is governed by a jump diffusion risk process. The insurance company can purchase proportional reinsurance for claims and invest its surplus in a risk-free asset and a risky asset whose return follows a jump diffusion process. Our main goal is to find an optimal investment and proportional reinsurance policy which maximizes the expected exponential utility of the terminal wealth. By solving the corresponding Hamilton–Jacobi–Bellman equation, closed-form solutions for the value function as well as the optimal investment and proportional reinsurance policy are obtained. We also discuss the effects of parameters on the optimal investment and proportional reinsurance policy by numerical calculations.
In this paper, we consider an insurance company whose surplus (reserve) is modeled by a jump diffusion risk process. The insurance company can invest part of its surplus in n risky assets and purchase proportional reinsurance for claims. Our main goal is to find an optimal investment and proportional reinsurance policy which minimizes the ruin probability. We apply stochastic control theory to solve this problem. We obtain the closed form expression for the minimal ruin probability, optimal investment and proportional reinsurance policy. We find that the minimal ruin probability satisfies the Lundberg equality. We also investigate the effects of the diffusion volatility parameter, the market price of risk and the correlation coefficient on the minimal ruin probability, optimal investment and proportional reinsurance policy through numerical calculations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.