We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By Smith’s theorem, if a cubic graph has a Hamiltonian cycle, then it has a second Hamiltonian cycle. Thomason [‘Hamilton cycles and uniquely edge-colourable graphs’, Ann. Discrete Math.3 (1978), 259–268] gave a simple algorithm to find the second cycle. Thomassen [private communication] observed that if there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in a cubic cyclically 4-edge connected graph $G$, then there exists a polynomially bounded algorithm for finding a second Hamiltonian cycle in any cubic graph $G$. In this paper we present a class of cyclically 4-edge connected cubic bipartite graphs $G_{i}$ with $16(i+1)$ vertices such that Thomason’s algorithm takes $12(2^{i}-1)+3$ steps to find a second Hamiltonian cycle in $G_{i}$.
We prove the conjecture formulated in Litvak and Ejov (2009), namely, that the trace of the fundamental matrix of a singularly perturbed Markov chain that corresponds to a stochastic policy feasible for a given graph is minimised at policies corresponding to Hamiltonian cycles.
A set E of edges of a graph G is said to be a dominating set of edges if every edge of G either belongs to E or is adjacent to an edge of E. If the subgraph 〈E〉 induced by E is a trail T, then T is called a dominating trail of G. Dominating circuits are defined analogously. A sufficient condition is given for a graph to possess a spanning (and thus dominating) circuit and a sufficient condition is given for a graph to possess a spanning (and thus dominating) trail between each pair of distinct vertices. The line graph L(G) of a graph G is defined to be that graph whose vertex set can be put in one-to-one correspondence with the edge set of G in such a way that two vertices of L(G) are adjacent if and only if the corresponding edges of G are adjacent. The existence of dominating trails and circuits is employed to present results on line graphs and second iterated line graphs, respectively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.