We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hardy kernels are a useful tool to define integral operators on Hilbertian spaces like
$L^2(\mathbb R^+)$
or
$H^2(\mathbb C^+)$
. These kernels entail an algebraic
$L^1$
-structure which is used in this work to study the range spaces of those operators as reproducing kernel Hilbert spaces. We obtain their reproducing kernels, which in the
$L^2(\mathbb R^+)$
case turn out to be Hardy kernels as well. In the
$H^2(\mathbb C^+)$
scenario, the reproducing kernels are given by holomorphic extensions of Hardy kernels. Other results presented here are theorems of Paley–Wiener type, and a connection with one-sided Hilbert transforms.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.