We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
One aim of personalized medicine is to determine which treatment is to be preferred for an individual patient, given all patient information available. Particularly in mental health, however, there is a lack of a single objective, reliable measure of outcome that is sensitive to crucial individual differences among patients.
Method
We examined the feasibility of quantifying the total clinical value provided by a treatment (measured by both harms and benefits) in a single metric. An expert panel was asked to compare 100 pairs of patients, one from each treatment group, who had participated in a randomized clinical trial (RCT) involving interpersonal psychotherapy (IPT) and escitalopram, selecting the patient with the preferred outcome considering both benefits and harms.
Results
From these results, an integrated preference score (IPS) was derived, such that the differences between any two patients' IPSs would predict the clinicians' preferences. This IPS was then computed for all patients in the RCT. A second set of 100 pairs was rated by the panel. Their preferences were highly correlated with the IPS differences (r=0.84). Finally, the IPS was used as the outcome measure comparing IPT and escitalopram. The 95% confidence interval (CI) for the effect size comparing treatments indicated clinical equivalence of the treatments.
Conclusions
A metric that combines benefits and harms of treatments could increase the value of RCTs by making clearer which treatments are preferable and, ultimately, for whom. Such methods result in more precise estimation of effect sizes, without increasing the required sample size.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.