We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Researchers have developed numerous indices to identify vulnerable sub-populations. The Centers for Disease Control and Prevention (CDC) Social Vulnerability Index (SVI) is the most common and highly serviceable, but it has some temporal limitations considering that some variables used in calculating the CDC-SVI were not available before 1980. Changes in societal composition over time can impact social vulnerability. This study defines an alternate, but similar, index that could serve as a surrogate for the CDC-SVI without the temporal limitations.
Methods:
An inventory analysis of the historical census data (1960-2018) was used to develop a Modified SVI that allows for historic analyses. To consider the chronic effect of social vulnerabilities, a longitudinal SVI was introduced to elucidate how a community’s multidimensional experiences exacerbate vulnerability to disaster events, such as the COVID-19 pandemic. We use Harris County, Texas, in this case study to examine how the Modified SVI performs against the original CDC-SVI.
Results:
This Modified SVI was used to generate historical maps, find temporal patterns, and inform a longitudinal SVI measure. The results showed a good agreement among the developed indices and the CDC-SVI. We also observed satisfactory performance in identifying the areas that are most vulnerable to the COVID-19 pandemic.
Conclusions:
The Modified SVI overcomes temporal limitations associated with the CDC-SVI, and the longitudinal SVI captures a community’s multidimensional experiences that exacerbate a community’s vulnerability to disaster events over time.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.