We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 5 is mainly devoted to the interaction between waves and immersed bodies. In general, an immersed body may oscillate in six different modes, three translating modes (surge, sway, heave) and three rotating modes (roll, pitch, yaw). An oscillating body radiates waves, and an incident wave may induce a corresponding excitation force for each one of the six modes. When a body oscillates, it radiates waves. Such radiated waves and excitation forces are related by so-called reciprocity relationships. Such relations are derived not only for a single oscillating body but even for a group (or 'array') of immersed bodies. Axisymmeric bodies and two-dimensional bodies are discussed in separate sections of the chapter. Although most of this chapter discusses wave-body dynamics in the frequency domain, a final section treats an immersed body in the time domain.
The first part of Chapter 7 deals with oscillating water columns (OWCs). The concepts of radiation conductance and susceptance are introduced. The former is related to the radiated power, whereas the latter represents the reactive power. Expressions for the power absorbed by the OWC are derived, which are analogous to those of the oscillating body WEC. The potential energy of the OWC is also discussed. The last part of Chapter 7 deals with wave energy converters that move in modes other than the six conventional rigid-body modes. The theory of generalised modes are described, and some examples are given to illustrate the utility of the theory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.