We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the exact Hausdorff and packing dimensions of the prime Cantor set, $\Lambda _P$, which comprises the irrationals whose continued fraction entries are prime numbers. We prove that the Hausdorff measure of the prime Cantor set cannot be finite and positive with respect to any sufficiently regular dimension function, thus negatively answering a question of Mauldin and Urbański (1999) and Mauldin (2013) for this class of dimension functions. By contrast, under a reasonable number-theoretic conjecture we prove that the packing measure of the conformal measure on the prime Cantor set is in fact positive and finite with respect to the dimension function $\psi (r) = r^\delta \log ^{-2\delta }\log (1/r)$, where $\delta $ is the dimension (conformal, Hausdorff, and packing) of the prime Cantor set.
The results of the previous chapter are not the last word about Sullivan conformal measures. Left alone, these measures would be a kind of curiosity. Their true power, meaning, and importance come from their geometric characterizations and their usefulness, one could even say indispensability, in understanding geometric measures on Julia sets, i.e., their Hausdorff and packing $h$-dimensional measures, where, we recall, $h=\HD(J(f))$. This is fully achieved in the present chapter. Having said that, this chapter can be viewed from two perspectives. The first is that we provide therein a geometrical characterization of the $h$-conformal measure $m_h$, which, with the absence of parabolic points, turns out to be a normalized packing measure, and the second is that we give a complete description of geometric, Hausdorff, and packing measures of the Julia sets $J(f)$. Owing to the fact that the Hausdorff dimension of the Julia set of an elliptic function is strictly larger than $1$, this picture is even simpler than for nonrecurrent rational functions.
We first show with proofs the basic and fundamental concepts and theorems from abstract and geometric measure theory. These include, in particular, the three classical covering theorems: 4r, Besicovitch, and Vitali type. We also include a short section on probability theory: conditional expectations and Martingale Theorems. We devote quite a significant amount of space to treating Hausdorff and packing measures. In particular, we formulate and prove Frostman Converse Lemmas, which form an indispensable tool for proving that a Hausdorff or packing measure is finite, positive, or infinite. Some of these are frequently called, in particular in the fractal geometry literature, the mass redistribution principle, but these lemmas involve no mass redistribution. We then deal with Hausdorff, packing, box counting, and dimensions of sets and measures, and provide tools to calculate and estimate them.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.