We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Certain polynomials in ${{n}^{2}}$ variables that serve as generating functions for symmetric group characters are sometimes called $\left( {{S}_{n}} \right)$ character immanants. We point out a close connection between the identities of Littlewood–Merris–Watkins and Goulden–Jackson, which relate ${{S}_{n}}$ character immanants to the determinant, the permanent and MacMahon's Master Theorem. From these results we obtain a generalization of Muir's identity. Working with the quantum polynomial ring and the Hecke algebra ${{H}_{n}}\left( q \right)$, we define quantum immanants that are generating functions for Hecke algebra characters. We then prove quantum analogs of the Littlewood–Merris–Watkins identities and selected Goulden–Jackson identities that relate ${{H}_{n}}\left( q \right)$ character immanants to the quantum determinant, quantum permanent, and quantum Master Theorem of Garoufalidis–Lê–Zeilberger. We also obtain a generalization of Zhang's quantization of Muir's identity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.